
W-AIBl 477 -OHIO STATE UNIV COLUMBUS COMPUTER AND INFORMATION SC-ETC F/6 9/2
AN APPROACH TO RELIABLE INTEGRATION TESTING.(U)
MAY 81 A HALEY. S ZVEBEN F'49620-79-C-0152

JCLASSIFIEO OSU-CISRC-TR-G1-5 AFOSR-TR-81-0578 NL

-EEEEmmmmmEmmmmmmmmmmmml
mEEEmmmmEEImU..
I..F

2 8 TECHNICAL REPORT SERIES

LEVEL(

AUG 5 ig81D

C- ED noPUteR R

RIESEJFIRH ICE NTER::
81 8 03 0 7 8 ,,.dforpublicrele N

distribution unltmltbA "

THE OHIO STATE UNIVERSITY COLUMBUS, OHIO

OSU-CISRC-TR-81-5/

s•~/ / -- /

APPROACH TO/

RELIABLE INTEGRATION TESTI

..... by""'" 7

Allen Aaley m4- Stuart Zweben

A 5 ig8

Research supported in part by

Air Forcg..Ofice.-of Uientific esearch
i/ F4962Oe-7x9-1_

tionai44 e. Aoundation

/vNo F, ..MC.J8769

Computer and Information Science Research Center
The Ohio State University

Columbus, OH 43210

AIR FORCE OFFICE OF SCIENTIFIC REAVChS i (APC

NOTICE OF TRAN3MITTAL TO DDCI This technical report has 6ten reviewed and is
approved for publc rtlea,;e IAW AFR 190-12 (7b).

Distribution is uiai wited,

A. D. BLOSEofie

ABSTRACT

A testing strategy which involves integrating a previously validated

module into a software system is described. It is shown that, when doing the

integration testing, it is not enough to treat the previously validated module

as a 'black box", for otherwise certain integration errors may go undetected.

For example, an error in the calling program may cause an error in the module's

input which will only result in an error in the module's output along certain

paths through the module. The results indicate that such errors can be detected

by the module by retesting a set of paths whose cardinality depends only on the

dimensionality of the module's input space, rather than on the module's path

complexity.

Accas sio, For

D?: T:'3
A0LY-"! t&!f.1!cato d

_Distribution/
Byl t Codes

= !cal

I /

AIR k'ORCE UF'IJE OF SVIENTLFIC RESEARCh (ASCJ
NOTICE OF TPAfl2MITTAL TO DDC
This tcbn.ical rvpor-t 11.t:; beli reviewed and Is
approved for publ.. release AW AFR 190-12 (7b).
Distribution is unlimited.
A. D. LOS
Techn1..l Jlformtion Oficer

ii ii

. 1~l .. . x. 1I1il

PREFACE

This report is the result of research supported in part by the Air Force

Office of Scientific Research under contract F49620-79c-0152 and by the National

Science Foundation under grant MCS-8018769. It is being published by the

Computer and Information Science Research Center (CISRC) of the Ohio State

University in conjunction with the Department of Computer and Information

Science. CISRC is an interdisciplinary research organization which consists of

the staff, graduate students, and faculty of many University departments and

laboratories.

I

J!

INDEX TERMS

Software Engineering, Computer Program Testing, Integration, Modules

1

llh

TABLE OF CONTENTS

Abstract .. ii

Preface ... iii

Index Terms ... iv

I. Introduction 1

2. Integration Testing Philosophies 4

3. Integration Time Errors 6

4. Detecting Integration Errors 9

5. Detection of Integration Time Computation Errors.. 15

6. Detection of Integration Time Domain Errors 26

7. The Linearity Requirements 33

8. Final Remarks 33

References .. 36

NOTICE OF TRAnS4jjj O ~
TM5I tOREol TinSi. TTALOIE OF T FC DDC RESEARCH (AJPSC)

This teohntc~i report hnS bee,, revzeved a04 1.approved fo, P rIl AW APR 19Q-12 (?b).
Dlstrlhutl j. unA

Pe V i,: tc"d.

r "on Urricer

IV

AN APPROACH TO RELIABLE INTEGRATION TESTING

Allen Haley

Stuart Zweben

1. Introduction

While program testing remains the most widely used method of validating

computer software, the computer field is still in the unenviable position of

lacking practical, effective testing methodologies. Test data chosen by random

or ad hoc methods-may provide at least some method of testing but indicates

little as to how well tested is the resulting software. Practical testing

strategies which attempt to satisfy certain necessary conditions (such as

statement or decision coverage approaches) can be shown incapable of detecting

many errors (see, e.g. [Howden, 76, Westley, 79]). Finally, strategies which

attempt to guarantee detection of wide classes of errors (e.g., path oriented

strategies) require too much testing to be of practical value especially where

large programs are involved. In such cases one must look for ways to reduce the

amount of testing required without placing severe penalties on the amount of

confidence in the correctness of the tested program.

One possible approach to achieving this reduction is motivated by

considering the problem of program development. In developing the solution to a

large, complex problem, it is customary to form subdivisions which abstract

interesting aspects of the total solution. These subdivisions might then be

refined, implemented, and tested as independent units of the total system and

then integrated to form a complete working solution to the original problem.

When viewing the integrated program as the object to be tested, it may well be

the case that the complexities are too great to make certain testing strategies

2

practical. For example, consider a program P consisting of subprogram P1

containing m paths followed by subprogram PP containing n paths. The

integrated program can have a total of m * n paths (see Figure 1 for r-3 and

n=4), since any of the m paths in P1 can be followed by any of the n paths

in P2

P1

P2

Figure 1

Integration of Subprograms with 3 and 4 paths, respectively

lab W-

3

In the course of developing P however, it may well be the case that both I'1

and P2 have been tested separately. It would be desirable if the correctness

information obtained in unit testing P1 and P2 could be used in validating

1P . If the individual modules do not contain a large number of paths, it ray

in fact be possible to test all possible paths in each module. If the

additional testing required at integration time was negligible compared to the

unit testing overhead (for example, if we could ignore the internal control

structure of a tested module when integrating it), the result would be a

reduction of the magnitude of the testing problem from 0(m*n) to 0(m+n)

While this represents in some sense an ideal situation, it is clear that with

such a potential for complexity reduction, even a less than ideal solution might

represent a considerable improvement and yet provide a substantial degree of

practicality.

Research to date in program testing has concentrated on a single prograr

unit. There is nothing inherently wrong or undesirable with this approach,

since in order to be able to say anything about a large problem, it makes sense

I. The notion of a module has been characterized in many different ways, and

several authors have proposed criteria for what constitutes a "good module"

(see, e.g. Parnas, 72, Yourdon, 79, Stevens, 74]. It will suit our purposes to

allow a module to be any single entry, single exit block of code which can

contain an arbitrary amount of internal control structure. For simplicity, we

may represent modules as subroutines in this paper, with the understanding that

the ideas presented herein are not meant to be restricted to this form of

modular structure.

4

to gain an understanding of the (smaller) units of which the problem is

composed. However, given that these individual units must eventually work

together as a system, we must be conscious of potential problems that might be

encountered at integration time, and develop testing strategies which are

sensitive to these problems as well as those of a single program unit.

Thus, the justification for the development of a method of integrating

independently tested modules into a single program is (1) to reduce the total

testing complexity, and (2) to make the testing procedure conform to the way

programs are developed.

2. Integration Testing Philosophies

There are basically two approaches to testing a set of modules which

ftr- the overall structure of a system -- top down and bottom up.

A {E} 5 {C,F,G}

2 {F 6 iD}
B C D 3 {G } 7 (A,B,C,D,E,F,G }

/ /\ 4 {BB
E F G

System Configuration Possible Test Sequence

Figure 2

In bottom up testing, individual modules are first tested in isolation

from one another using their own sets of test data. When groups of related

modules have been validated, they are integrated into a higher level unit

(subsystem) which is then tested. The subsystem tests in general require new

5

test data, since different inputs and outputs are involved at the higher level.

Larger and larger subsystems are combined until eventually the entire system is

tested as a unit. Using the "system" of Figure 2, a possible sequence of tests

using a bottom up technique would be: (1-7). The primary disadvantages of this

form of testing are the variety of test data required at each level and the

increasing complexity of the subsystems as the integration proceeds.

Top down testing, on the other hand, involves starting with the highest

level component of the system and proceeding to the next lower level, etc.

L.ing Figure 2 as a model once again, the "higher level" test should ideally

determine that A functions correctly, knowing only the abstract purposes of B, C

and D, so that when B, C and D are eventually implemented, it is necessary only

t o show that they achieve their abstract purpose (that is, theoretically no

integration testing is required). H{owever, our ability to select appropriate

tests of A based on these abstractions and to certify the correctness of A's

output on these tests (which, after all, requires output from abstract, as yet

unwritten modules), is quite limited. We are much more likely when testing A to

first write stubs for B, C and D which do nothing more than indicate that the

second level modules have in fact been called, and later embellish B, C and D sc

that they can produce correct output for some very small, well known class of

possible inputs. While this method helps identify the appropriateness of the

invocation of the lower level modules and can speed up the completion of a

preliminary version of a complex system, it tends to mask the subtle

interrelationships between the components until all are completely developed and

an attempt is made to have them work as a unit.

Therefore, one can say that even if a top down testing philosophy is

attempted, integration testing will be necessary after the lowest level modules

r I mi k I ... [l - i ll m l

6

have been completed. That is, some mixture of top down and bottom up testing is

probable.

In the remainder of the paper, we will explore the issues involved when

a "correct" module (one which produces the appropriate output for any valid

input) is integrated into a larger program context, with the goal of identifying

testing strategies which are sensitive to integration time errors.

3. Integration Time Errors

In order to be able to characterize the effectiveness of any testing

approach, it is necessary to identify those errors which are of interest to the

strategy under consideration. Any finite testing procedure is known to be faced

with certain inherent limitations as to the errors it is capable of detecting.

One of these limitations can be characterized as the "coincidental correctness"

problem, whereby the program under examination happens to produce the same

results as the (different) desired program on the set of iata tested. Thus, a

statement such as X-X+2 cannot be differentiated from X=X*2 if the only test

data chosen result in X-2 on entry to the statement. Another inherent

limitation of any finite strategy has been called the "missing path" problem.

This problem arises, for example, when some "special case" has not been

appropriately dealt with. Thus there may be some special action to be taken

only "IF X-i", which the programmer forgot to include. If none of the test data

happen to set this condition, the missing action will not be detected.

Admitting that errors due to coincidental correctness and missing paths

may go undetected, the next problem is to try to classify those kinds of errors

that we might hope to detect. One proposal, due to Howden ([owden, 76],

distinguishes between domain errors and computation errors. A domain error

I 7

occurs when a specific input follows the wrong path due to an error in the

control flow of the program. A computation error exists when a specific input

follows the correct path, but an error in some assignment statement causes the

wrong function to be computed for one or more of the output variables. This

classification scheme has been used successfully by researchers of the Domain

Testing Strategy [White, 80]. The Domain Testing Strategy is designed to detect

domain errors, though it also has some ability to detect computation errors.

The notion of domain and computation errors turns out to be useful in

characterizing certain types of integration problems. For example, consider a

module M which has been thoroughly validated, say by some "Hypothetical

Testing Strategy", so that it is free of both domain and computation errors.

Module M is to be integrated into a program P ,. Assume that P has some

computation whose result (call it C) is used in some predicate of M but is

not uaed anywhere else in the program (see Figure 3).

READ Ip
C- Ip IF C< 4

P CALL M (... , C,...Om) M THEN Oml
Op - Om ELSE Om-2
PRINT Op

Figure 3

Program Containing a Computation Used Only

in a Predicate of a Previously Tested 11odule

I
I

8
Now suppose that the correct computation in P should have set C to Ip+l

In validating M , we may have ensured that M produces the correct output no

matter which branch of the IF statement is taken, but P will still produce the

wrong output if the initial value Ip is such that 3: Ip4 4. However, if we do

not happen to choose a value of Ip in this range we will not catch the error

in the computation statement. Notice that, from the point of view of the

program P , there is only one path to consider (Read Ip; C-Ip; CALL M (...);

Op=Om; PRINT Op) if we ignore the control structure of the module !V . Ideally,

we would like to be able to ignore the internal structure of M at integration

time and deal only with P's structure. Yet this example shows that we must do

more than just select a couple of values of Ip and examine the resulting

values of Op . In this case, if we were to analyze the integrated program

including the module's control structure, we would notice that the program

contains a domain error, since values of Ip in the range 3!fIpA 4 follow the

wrong path.

Computation errors cause another problem in ignoring the validated

module's control structure at integration time. Assume that the program contains

an incorrect computation whose result is passed to the validated module.

Further assume that the only use of this result is by some computation in the

validated module. As an example, suppose P is the same as in Figure 3, but M

is changed as in Figure 4.

K IF (condition)
THEN Om - C
ELSE Om -2

Figure

Module Which Transmits a Program Coputation Error

Assume once again that the computation in P should set C equal to

Ip+l instead of Ip . If integration test data were chosen which never

exercised the true branch of the condition in M , then the resulting value of

Om would always be 2 and the error in the computation of P would go

undetected by simply examining the output of the program.

These two examples have elements in common. In both cases there is an

error in the code preceding the call to the validated module. The error causes

one of the module's inputs to have an incorrect (not invalid) value; it is

possible for the error in the module's input to not be reflected as an error in

the module's output, since transmission of the error to an output may be

dependent upon the particular path chosen through the module. It is zherefore

clear that, when integrating a previously validated module, one needs to knew

more than just that the module is correct. If information relevant to the

module's internal structure is ignored, it is possible for both domain and

computation errors in the integrated program to go undetected. Therefore it is

natural to ask at this stage "What, in addition to knowing that the module is

correct, will allow effective integration testing to be done?".

4. Detecting Integration Errors

Two approaches to answering the question posed at the end of the

previous section are suggested by the examples presented in that section. Since

our goal is to detect errors in the module's input, we could simply require that

all Lnput values to the module be output (along with the normal output of the

calling program). This technique is not new, as programmers often print out

values of intermediate/temporary variables. However it is often hard to know

whether an intermediate program value is correct. More likely, the programmer

±s only interested in examining the final outputs of the (calling) program.

I

10

Therefore, we consider a second approach. It would appear that the

chief problem presented in the previous section is that the module's output may

be unaffected by the error in the calling program. This section therefore

addresses the problem of determining how much integration testing need be done

in the module in order to ensure that an error in the module's input results in

an error in the module's cutput.

To examine this problem in greater detail we will first impose the

following restrictions on the module.

1. restrict the module such that all inputs are assigned upon entry, and

no inputs are reassigned later in the module.

2. restrict the output variables such that all output variables are

assigned at the end of the module, i.e. on a given path after the first

assigr.ment to an output variable nc more assignments may be made to program

variables. In addition, no output variable of the module can be used as a

reference within the module. (This implies that the order in which the

output variables are assIgned along a path does not matter.)

3. restrict all computations and predicates to be linear with respect to

the module's inputs.

The first two restrictions serve primarily to simplify the notation

which follows. Since any program can be written so that it conforms t) these

two restrictions, they are not fundamental limitations. The third restriction,

though Considerable, makes it easier to model the computation sequence along a

path in the program. After the major results have been derived, we will discuss

the relaxation of the third restriction.

Ii

Given these restrictions, a program can be modeled in the following

manner.

Suppose the program contains m input variables Ii,..., Ir,

n program variables P,...,Pn, and I output variables 01,...,Ot.

We introduc an environment vector, V, which contains the current value of

a:! variables at some point of execution.

value of I1

value of Im

i.e. value of Pm

value of Pn

value of 01

value of 01

The I represents a position for constants. Its need will become apparent

in what follows, as we describe computations and predicates of the module

in terms of an environment.

I
I
I

12

Example 1 m-n4 n-3 1-2

SUBROUTINE MODULE1(I1,I2,13,14,O1,02)

1. P1=I1+12

2. P2=2*Il-I3+I4

3. IF P1=0

4. THEN

5. P3-P2+3

6. ELSE

7. P3=P1+P2

8. ENDIF

9. 01=P3

10. 02=P1+P2+P3

11. RETURN

12. END
1

I 1

if fI1, 12, 13, 143 = J1, -1, 2, 3? -1
2

Then after executing statement 1, V=3
0
undef
undef
undef
undef

1
1
-1
2
3
0

At the end of the program V 3
6
6
9

13

A computation in the program (which by assumption is linear) will be

represented as a 1 + m + n + L by 1 + m + n + I matrix. Intuitively, a row

of this matrix describes the effect of the computation on an individual input,

program, or output variable.

For a single assignment statement, which assigns exactly one program or

output variable, the matrix is just an identity matrix except in the row

correspondfng to the assigned variable. The entries ivi this row contain the

coefficients of the input and program variables which appear on the right hand

side of the assignment statement, placed in the appropriate coluwns.

Example 2 Using the subroutine MODULE1 in example 1, the matrix C
corresponding to statement 2 is

I o o o o o o f o nl o
0 1 0 0 0 o 0 0 n o0
0 0 1 0 0 0 o nl n n
0 0 0 1 0 0 0 0 0

C(stmt 2) 0 0 0 0 1 0 0 0 0
o o o o o 1 0o n 9o

0 2 0-1 1 0 0 0 0 0
n 0 o o0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0

o o o o n o o

while that for statement 5 is

/1 0 0 0 n n n 0 0 n
n 1 0 o 0 0 0 0 0 0

n o o 0 n n n o n o

C(stmt 5) " 0 0 n0 1 0 0 0 0 0
o o o n n i n n n o
o 0 n n n n 1 n n n
3 0 0 0 n n I n o n
0 0 n n n n 0 0 1 0
o n n o n n n n n 1,
10 0 00 0

Ii 0

14

A sequence of computations along a given path can be represented as the

product of the matrices corresponding to the individual assignment statements.

Example 3 The computation sequence corresponding to executing statements 1, 2

and 5 is

C(stmt 5) x (C(stmt 2) x C(stmt 1)) =

1l 0 0 o 0 0 n n 0 n 1
n 1 0 0 0 o 0 0 0 o
o 0 1 0 0 0 0 o 0 0
0 o o 1 0 0 n 0 n o
0 o n o 1 n n 0 n 0
0 1 1 o n 0 n o n 0
0 2 0 -1 1 0 0 0 0 0
3 2 0 -1 1 0 n n 0 0
0 0 0 0 0 0 o 0 1 0

n n o o o o o n 1

~Given this model, there are two separate ways in which an error in the

~input can be transmitted to an output of the module.

1. An error in the input can cause the correct path (i.e. the same path

that would have been followed had there been no error) to 1)e taken, but c~n

result in an incorrec.t value being assigned to an output variable. With

respect to the entire integrated program, such a situation can be viewed as

a computation error. We will call such errors "integration time

computation errors".

2. An error in an input can cause an incorrect path to be taken in the

module which in turn results in a different computation being performed and

hence an incorrect value in an output variable. With respect to the

integrated program, this situation can be viewed as a domain error. lie

will call such errors "integration time domain errors".

--- +-l ...0000000III00I...

15
5. Detection of Integration Time Computation Errors

We first examine the methods by which an input error to the module can

be transmitted to an output variable along a given path (the computation error

situation). Using the three restrictions introduced earlier, the results of the

computations along a given path can be represented by

VF = C(O) C(O1)C(k).... C()VO

where C(A) ,C(l) represent the computations which assign program variables

along the path, C(OI) C(01) represent the assignments to the output

variables, VO is the initial environment vector and VF is the final

environment vector (the result of the computations). The above expression can

be condensed by matrix multiplication to

VF = c(e)C(P)vo

where C(P) C(k) C(l) and C(O) = C(81) C(el). This can be further reduced to

VF C vO

where C is now a single I + m + n + by 1 + m + n + matrix which

represents the results of all computations performed along the particular path.

2. We will adopt the convention that it is permissable to multiply undefined

values by zero, resulting in a value of zero. Multiplication of undefined

values by any nonzero quantity will result in a value which is undefined. (see

Example 4)i
I

16
The final expression for each program and output variable of C is in terms of

the input variables and constant only, thus corresponding to performing a

symbolic execution of the particular path.

Example 4 Using the same subroutine as in Example 1, with
jil, 12, 13, 14) - fl, -1, 2, 3), we have

-i 0 0 0 0 0 0 0
-1 0 10 n 0 n n0 o 0

2 0 0 0 1 0 n 0 0 0
71O- 3 CM 0 0 0 1 n 0 0 0 0

undef 0 1 1 0 0 0 0 0 0 0
undef 0 2 0 -1 1 0 0 0 0 0
undef 3 2 0 -I 1 0 0 0 0 0
undef 3 2 0 -1 1 0 0 0 0 0
undef 3 5 1 -2 2 0 0 0 0

1
-1

2
VF- 3

n
3
6
6
9

The question to be considered is "In what ways can an error in VO be

transformed into an error in VF ?". If O is incorrect then it cen be

represente as

VO -VO' +e e$#0

where VO' is the correct initial environment vector, and e is the initial error

term in the environment vector. Since the initial error can only occur in the input

variables, ; is restricted to be 0 in the first position, and 0 in the last

n + f positions, and nonzero in at least one position from 2 to m + 1.

17

If this new expression is substituted into the expression for the path

environment it yields

VF - C (VO' +)

or

VF - C To' + C

Since the erroneous input follows the same path through the module,

C VO' represents the "correct" final environment vector (i.e. the same C

should have been applied to VO' , the correct initial environment). Therefore

the error is only detectable in the final environment vector if CE 0A

However, this restriction isn't sufficient to ensure detection. This is because

we are assuming that, as a result of executing a path through the module, only

the "output variable part" of the final environment vector, and not the entire

final environment vector, is available. Therefore, if the error in the input is

to be detected, then

(C) 0 3 (1)
elements m+n+2 thru m+n++l

3. As a notational convention, we will use subscripts to express a subset of

elements of a vector or matrix. Thus, condition (1) can be written as

(CZ)
m+n+2 , m+n+t+l

Similarly, if we wished to describe the "upper left" submatrix of C containing

the first y rows and z columns, we could write Cl,...,y x 1, ... ,z

I

18

(Clearly, C E is never equal to 0 since C , 4 and we have

restricted the module so that it cannot reassign its input variables. Hence at

least one of the elements in rows 2 through m + 1 must be nonzero.)

To better understand the meaning of this restriction that C U not be

0 in the last I positions, let's examine the C matrix in greater detail.

C can be considered to have 9 submatrices of the following form.

C(1,1) C(1,2) C(1,3)

C a c(2,l) c(2,2) C(2,3)

C(3,1) C(3,2) C(3,3)

where:

C(l,l) is an m+l by m+l matrix which describes how the inputs and

constants are mapped onto the inputs and constants. (By our restrictions

this must be equal to the identity matrix.)

C(1,2) is an m+l by n matrix which describes how program variables are

mapped onto the inputs and constants. (This must be 0 by our

restrictions.)

C(1,3) is an m+l by I matrix which describes how outputs are mapped

onto inputs and constants (also equal to 0).

19

C(2,1) is an n by m+l matrix which describes how inputs and constants are

m:pped onto program variables. (This submatrix is unrestricted in form.)

C(2,2) is an n by n matrix which describes how program variables are mapped

onto program variables. (This submatrix is n since C contains the results

of a symbolic execution of the path and program variables in their final

symbolic form are defined completely in terms of input variables and ccnstants.

The o:ly possible exception is the row corresponding to a program variable which

is not defined along the path. Such a row would have a I in the column

corresponding to the program variable and zeros elsewhere.)

C(2,3) is an n by I matrix which describes how outputs are mapped onto progra

variables (also equal to 0).

C(3,l) is an I by m+l matrix which describes how inputs and constants are

mapped onto output variables. (This submatrix is unrestricted in form.)

C(3,2) is an I by n matrix which describes how program variables are mapped

onto outputs. (This submatrix mussbe 0 for the same reasons given for

C(2,2) above.)

C(3,3) is an £ by I matrix which describes how outputs are mapped onto

outputs. (This must also Ie 0 , with the exception of "identity rows", asa
described in C(2,2), corresponding to output variables which are unassigned

along the path.)
a_

i
Ib

20

Exap e 5 Using the C matrix from Example 4, we have the following
partition

1 0 n 0 n 0 n o 0 o
n 1 n o 0 o 0 0 0 n
n o 1 o n n 0 o o 0
0 0 0 1 0 0 n 0 0 0

c.= 0 0 0 0 1 0 0 0 0 0
0 1 1 0 0 0 0 0 n n
0 2 n -i 1 0 n n n o
3 2 0 -1 1 0 n 0 0 0

S3 2 n-i 1 0 0 0 0 0
3 5 1-2 2 0 0 n 0 0.

If we now return to the question of transforming an error in the input

to an error in the output by looking at the breakdown, we note that the only

interesting part of the C matrix is the submatrix C(3,1) which describes how

inputs and the constant are mapped onto the output variables. The results of

the computations along a path can now be described by

VF I+m+n+l , . . . , l+ m+n + i = Cl+m+n+l,...,l+m+n+.l x l,...,m+l *VOl,...,m+l

=C(3'I)VOI°- m+l

Again introducing the error term we get

VF 1+m+n+l,...,I+m+n+.R = C(3,1)(VOl,.,~ + el,.,~

or

VFl+m+n+l ,l+m+n+l C(3,1)V01, . . . , m+ l
+ C(3,1)Z,...,m+l

21

so that the error can only be detected in the final environment vector for this

path if C(3,1) 1 .,m+1 ' O.

We can further note thait the constant position in l,...,m+1 is always

zero. That is, we really have only it. linearly independent "error directions",

correspoding to the m input variables of the module (assuming no inherent

relationships among these inputs). Therefore, the first column of C(3,1.)

ploys no part in determining whether C(3,l)9j ... 0m+lO 0. Defining C'(3,1)

to be C(3,1) without the first column, we con now say that the input error can

only be detected in the final environment vector for the path if

We therefore seek a feasible path for which it is possible to detect an

input error in any jf the m directions by examining the values of the output

variables in the final environment vector. Such a path must "span the error

space", so that all possible error directions are feasible along the path.

Since the dimension of the error space and input space are the same, we will

call such a path input space spanning.

We zan now conclude

Lemma 1: Examination of the outputs of a mcdule on an) test exercising an input

space spanning path for which

e2,. ..,m+l 0 ->C'(3,e) ; 2,.. .,, (2)

is sufficient to detect any integration time computation error affecting the

module.

I
I .

22

From linear algebra, we
know that

Lemma 2: A path satisfies condition (2) if there exists an m x m matrix M

consisting of m rows of C'(3,l) such that JMJ 0 0.

Intuitively a path satisfying the conditions of Lemma 2 transforms the

inputs to outputs in such a way that there are Tr- linearly independent

functions of the inputs computed on that path.

Unfortunately, the results may not be very helpful since

a) there is no guarantee that such a path exists (in particular, if

R<m , as in example 1, no such path can exi.st), and

b) even if there is such a path, finding it, or even showing its

existence, may require a substantial amount of computation. For

example, for each path in the module, there may be matrices

whose determinants must be checked.

Exam21e 6 Using the program of Example 1, we note that neither path is

sensitive to all possible error directions. The "then" path, analyzed in

Example 5, gives

C'(3,1) - 21 1 which clearly contains no 4 x 4 matrix having

nonzero determinant. It is easy to see that this path cannot detect an error

where both 13 azc 14 are incorrect by the same amount k . In such a case

01 = 3+2*Ii - (I3+k) + (14+k) - 3+2*I1 - 13 + 14

02 = 3+5*Ii + 12 - 2*(13+k) + (14+k) - 3+5*11 + 12 - 2*13 + 2*14

which are the same results as would have been produced with correct values of

13 and 14.

The reader can verify that the "else" path is also insensitive to

certain error directions.

"~~~ ~~~~~ - - - - -.. . . II I I IIII Ii --- -II

23

However, it is not necessary for a path satisfying Lemma 2 to exist.

Consider an m x m matrix I' constructed from various rows in C'(3,1)

matrices taken from different input space spanning paths through the module.

That is, M' consists of the results of some subset of output variables along

some set of paths through the module. If 11'I o 0 , then e 2 , ...,m+l 0 -->

M'e2,...,m+1 0. Intuitively this means that we only need to find m linearly

independent functions of the inputs computed somewhere in the module, even if we

need to select several paths to find them. Of course, it is entirely possible

that the same output variable will need to be examined on more than one path in

order to obtain this set of functions. We can now conclude

Lemma 3: Examination of the appropriate output variables from any test

exercising those paths corresponding to the construction of M' as defined

above is sufficient to detect any integration time computation error affecting

the module.

Example 7 SUBROUTINE MODULE2(Il, 12, 01, 02)

IF Il = 0

THEN

01 2*I1+

02 11+2

ELSE

IF 12 - 0

THEN

01 = 12+1

02 - 2*12+2

ELSE

0l = 11+12

02 = 3

ENDIF

ENDI F

24

No path is by itself sensitive to every error direction. However any two

paths are sensitive to all error directions with the stipulation that if the

"else-else" path is selected, 01 must be examined. The relevant C'(3,1)

matrices for this example are

1 0 , n 12 and 0 0

The following theorem is an immediate consequence of Lemma 3.

Theorem 1: In order to detect any integration time computation error affecting

a previously validated module, it is sufficient to test at most m input space

spanning paths from the module, chosen so as to guarantee the existence of M'

defined above.

Proof: A path need not be chosen for inclusion in the integration test set

unless it is sensitive to some error direction that no other paths in the test

set are sensitive to. The result then follows from the fact that there are only

m error directions to begin with.

In many cases fewer than m paths will be required since one or more

paths may contribute multiple rows to M' . If the particular module being

examined has at least as many outputs as inputs it is possible that a single

path will be sufficient to pass all possible errors in the input to errors in

the output.

Theorem 1 still leaves the following open problems:

a) How does one find the proper C'(3,1) rows in order to build the m x m

non-singular matrix? For a given program with p paths, I outputs, and

m inputs there are

(x:)

25

different candidates for M'. Clearly some path selection method must be

used to reduce this large number of candidates.

b) The possibility exists that no m x m non-singular matrix exists (i.e.

all paths through the module are "blind" to one or more error directions).

Is there some method to discover this without looking at all candidates for

the m x m non-singular matrix? (The reader should verify that the

program of Example 1 is in fact completely blind to the error direction

discussed in Example 6.) We will call those integration time computation

errors, which are in directions which all paths are not blind to,

"detectable integration time computation errors".

c) The requirement that paths be "input space spanning" needs further

examination. Equality predicates, or combinations of predicates which

imply an equality condition (such as A--E B and A 2!-B), along a given

path make it impossible for certain types of integration errors to be

detected since the correct and erroneous inputs can never follow the same

path. However the computations along that path might still satisfy the

conditions of Lemma 2.

For example, consider a module with inputs I and J, outputs 01 and 02)

and a program segment

IF I-

THEN

OlI - + J

02=w2+J

ELSE

!
I .. .

26

Examination of just the computations assigning 01 and 02 might lead us to

conclude that this "then" path is sufficient to detect any error in I and J

(since~ 0j I 0), while in reality it's only powerful enough to detect errors

in the input when both I is equal to I and I should be equal to I. In effect,

there are no input errors in I which cause this path to be followed when it is

correct to follow this path. We should, therefore, restate Lemmas 1 and 2 to

say that such a path is powerful enough to detect any input error for which the

path is still the correct one to be followed. All other input errors really

manifest themselves as integration time domain errors from the point of view of

this path. Integration time domain errors are studied in the following section.

We conclude this section by noting that, since there are only m

linearly independent error directions to be covered,

Theorem 2: A set of at most m "beneficial" paths (where a path is added to

the set iff it covers a new error direction) will suffice to transmit any

detectable integration time computation error in an input to a correct module to

some output of the module.

If the paths are input space spanning, we need only compute the matriy

information discussed previously. If not, we must further ensure that an error

direction which we intend a path to cover is in fact feasible along that path.

6. Detection of Integration Time Domain Errors

We now address the second type of integration error presented in Section

4, that of an error in the calling program which causes the (incorrect) input to

the module to follow a different path. This situation comes about when the

error causes one of the module's predicates to have an interpretation which is

27

nonequivalent to that which correct input would have produced.

The model of Section 4 needs to be expanded slightly 'n order to

incorporate the idea of a predicate Interpretation. Given a particular

predicate T in the module that is under examination, and a path leading to

that predicate, that predicate interpretation can be modeled as

0 .relop. -it C To

where VO repre-ents the initial environment Nector (as before)

C represents the results of the computations in the module

along the path leading to the predicate.

T represents the predicate which when appl~ed to C VO yields

a scalar which is compared to zero to determine Ohether to

branch or not. i.e., the elements of T contain the

coefficients of the constant and variables used in the

predicate. (The transpose of T is required in this scalar

product since T is a column vector.)

.relop. is any relational operator which determines the type of

comparison being made.

I
I
'I

28

Example 8 Using the module of Example 1 again, the predicate P1 0 can be

represented as

0

0
0

T- 0
1
0
0
0to
0

Since there is only one path leading to this predicate,

1 o o o o o o n o o

00 10 0 0 0 0 0 f) 0
o 0 01 0 0 n n0 0 0

CM- 0 0 0 0 1 0 0 0 0 0
o 1 1 o o n 0 n 0 o
0 2 0-1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

value of Ii
value of 12
value of 13

__ value of 14
'VO undefined

unde fined
undefined
undef ined
unde fined

Thus the interpretation of the predicate is

or
0 Ii + 12

which, when evaluated for fII, 12, 13, 143" -f, -1, 2, 33,

yields
0 0 or TRUE.

1 0 000000

29

In order for an error in the calling program to produce nr.nequivalent

predicate interpretation along some given path in the correct module, it is

necessary for the follwiing condition to hold.

A kso

e~ m~bC (VO + e) A A TtCV (2)

where I represents the error vector. That is, the erroneous interpretation of

the predicate s.-ould not be a multiple of the correct interpretation, for

otherwise the path taken by any input reaching this predicate along the given

path will not be altered.

Example 9

Using the subroutine of Example 1 once again, we consider the

predicate Pl _ 0 , whose interpretation is Il + 12at 0. If an error in

the calling module causes I and 12 to be modified (to Il' and 12')

in such a way that Ii' + 12' = A(I + 12) for some A0 , then the

interpretation of this predicate (i.e. A (Il + 12):_t 0) is equivalent to

the original. As an example of such a situation, suppose the calling

program had inputs X, Y, and Z and further suppose that computations in the

calling program should have set

Il - X + 2*Y

12 - 2*Z

but erroneously set

II 2*X + Z

12 3*Z + 4*Y

Then, ir. terms of the inputs to the calling module, the

A

30

interpretation of P1 :- 0 should have been X + 2*Y + 2*Z ! 0 , but instead is

2*X + 4*Y + 4*Z - 2*(X + 2*Y + 2*Z)a-- 0. Both the correct and incorrect

interpretations evaluate identically for any triplet (X, Y, Z).

As in the previous section, we must be cognizant of the effect non input

space spanning paths have on the ability of a predicate to undergo a charge in

interpret at i n.

Example 10 The predicate PI-.t 0 from Example 1, whose interpretation is

Il + 12 ---0 , appears to be sensitive to changes in the input Ii as long

as its new interpretation is not A(I! + 12) -- 0 . However, suppose that

this predicate appeared along a path in the module previously constrained

by a predicate Il - 1 . Since P1- - 0 cannot even be reached if 111 0 i

it can be said to have no interpretation under these conditions. Hence,

its Interpretation cannot be affected by a change in Ii , so that Pl is

no longer helful in identifying any errors in I.

Let us now examine the C matrix In greater detail. The C matrix c.:n

be considered as 9 submatrices (as before). The only 4ubiaatrix of interest

this time is C(2,1) (the submatrlx which defines how inputs are mapped onto

program variables), as only input and program variables can be uSed "n the

predicate. Likewise, the only interesting positions of T are the first

m + n + I positions (all the re3t must be 0). Therefore if condition (3) is

grouped in the following way.

rM

31

A o

e # 0 (TtC) (VO +) Ck~tC) ;70

then the expression (TtC) is the predicate interpretation vector of which only

the first m + I positions can be non-zero. These positions represent the

manner in which input variables are mapped onto the predicate scalar. Hence we

can expand condition (3) as follows.

((itC) 1 ,... ,m+iV'1,...,m+i) + ((TtC) 1 ,..,m+l1, ... ,m+1) O

((7tc) ,..,+ve°,. mt

where the subscripts indicate that just the first m + 1 positons of each

vector are being used. As a result, we can conclude

Lemma 4: Under restrictions 1-3 of Section 4, in order to ensure that an error

in the calling program produces a nonequivalent predicate interpretation along

some given path in the correct module, it is sufficient that there exist a

predicate T in the module and an input space spanning path leading to T

satisfying

e , = tOM 1.+e . ,m+ m+1V0 1 ... ,m+

We are now faced with the problem of how to detect such changes in a predicate

interpretation. Fortunately, the Domain Testing Strategy (White, 80] provides

an answer to this question. By selecting a small number of test points at or

near the border of the input space corresponding to the predicate inter-

pretation, we can guarantee that essentially all changes (up to a parameter C)

in interpretation are detected. In :der to use this result, it is necessary to

assume that adjacent regions of the modulets input space compute different

functions which do not give "coincidentally identical" results on the set of

test data chosen. With this in mind, we have

I

32

Lemma 5: By retesting a predicate statisfying Lemma 4 using the Domain

Testing Strategy, it is possible to detect any integration

time domain error which results in a change of magnitude

greater than 6 in the predicate interpretation.

As in the previous section, we note that

a) there is in general no predicate satisfying the conditions of Lemma 4,

and

b) since e1 = 0 , there are really only m linearly independent error

directions.

However, if we can select a set of m predicate interpretations

{t(Ttc) 2 ,..,m+I'ii1 from input space spanning paths such

that the m x m matrix 1" whose ith row consists of E(jtC) 32,... ,m+1 i

has a non-zero determinant, then

e2,...,m+l 0 0 ==[(iTtC) 2 , m+Ii Z2 ,..., 1 OA [(TtC) 2,...,m+lji '02,. .M+1

for all i =1,...
We can therefore conclude

Theorem 3: By retesting, using the Domain Testing Strategy, a set of

input space spanning paths through a correct module such that the set

contains m predicate interpretations satisfying the condition on M"

defined above, it is possible to detect any integration time domain

error in the module of Domain Testing consequence > E

As was the case in the previous section, we have no assurance that we

can ever find such a set of predicate interpretations, nor do we have a

computationally efficient method of finding them if they exist.

33

We also note, as before, that the "input space spanning" requirement

appears to impose additional requirements on the paths we can choose. However,

as before, a set of at most m "helpful" paths, each of which may itself be

insensitive to certain error directions, but which covers an error direction

that the other paths don't, will suffice to detect any "detectable" integration

time domain error.

7. The Linearity Requirements

Tha results presented in the previous sections were developed under the

very restrictive assumption that all computations and predicates were linear

with respect to the module's inputs. However, that assumption was not used in

its entirety. For example, we can apply the results for detecting integration

time computation errors as long as we can find a set of paths which produce

enough linear functions of the module's inputs so that the nonsingular matrix

MI can be produced. It is certainly more realistic to assume that some

functions computed along some paths in the module are linear.

For integration time domain errors, it is also not necessary to have all

computations and predicates be linear. Rather, we require that enough paths

containing linear predicate interpretations be found so that the matrix M" can

be constructed. Note that this restriction is even weaker than that of a

"linearly domained" module [Zeil, 81] , where every predicate is required to

have a linear interpretation.

Final Remarks

We have shown that, if an error exists in a computation preceding a call

to a previously validated module, and if that error results in an error in the

module's input, it is theoretically possible to detect this condition without

34

having to deal with the entire path complexity of the module. In fact, the

maximum number of paths that need be retested depends only on the dimensionality

of the module's input space. Sufficient conditions on this set of paths have

also been presented.

It remains to be shown whether computationally efficient methods exist

for finding the right set of paths to be tested. From the development of the

results, "input space spanning" paths seem to offer the most promise. This

suggests that choosing false branches of equality predicates and strict

inequality branches of other predicates may be a useful heuristic in attempting

to cover all error directions.

We have noted the possibility that no set of paths satisfying the

retesting conditions exists. One may be tempted to argue that the likelihood of

such a phenomenon is small, since the set of functions and predicates

constraining the error directions has measure zero with respect to the error

space under the standard "equal likelihood" assumptions. However, our intuition

tells us that in real programs the equal likelihood assumption does not apply.

We can further note that even if we can determine the existence of a set

of paths which, when retested, will be sure to transmit any input error to the

output of the module, we must now face the problem of generating test data for

the calling program which will exercise these paths. Our ability to generate

such test data may well be constrained by the structure of the calling program.

That is, we may only be able to generate data which exercise the key paths in

the correct module if we follow certain paths in the calling program. This may

inhibit our ability to thoroughly test certain parts of the calling program.

Experiments performed on real programs should provide useful answers as to the

35

severity of these problems.

We have approached the problem of integration testing in this paper frotn

a "bottom up" point of view, in that we were concerned with the integration of a

previously tested module into a higher level software unit. The resulting

integration testing strategy involves selecting carefully chosen paths in the

(completely developed) module for retesting. However, the results of this

investigation suggest that one might equally well have explored the problem from

the "top down" point of view. That is, we might explore the idea of using the

notion of "linearly independent" "input space spanning" paths in stub

development, for it is at this point in top-down development that we are really

concerned with error conditions in the higher level software unit.

Finally, we note that errors in the higner level unit which result in

incorrect module input values constitute only one class of integration problems.

For example, we might have errors (in the calling module) in the code following

the call to the correct module. The ability to detect these errors, however,

may depend on which path through the module was followed, since the program

statement in error may involve output variables from the correct module. It

remains to be shown whether the paths to be selected to catch input errors to

the module are in any way related to the paths required to detect these errors.

Despite these problems, formidable as they are, it is comforting to have

the intuitively appealing result that, from a theoretical standpoint, it is only

necessary to retest a small number of possible paths through a correct module in

order to detect certain integration errors. It is our hope that these results

can form the basis of a more unified and systematic approach to integration

testing, so that some form of (partial) certification of a software system may

be possible.I

36

References

[Howden, 76] Howden, W. "Reliability of the Path Analysis Testing Strategy",
IEEE Trans. on Software Eng., SE-2, 3, September, 1976, p. 208-214.

[Howden, 79] Houden, W., "Effectiveness of Software Validation Methods",
Infotech State of the Art Report on Software Testing, Vol. 2, Infotech
International, 1979, p 131-146.

[Parnas, 72] Parnas, D. L., "On the Criteria to be Used in Decomposing Systems

into Modules", Comm. ACM, 15, 12, December 1972, p. 1053-1058.

[Stevens, 74] Stevens, W., Myers, G. and Constantine, L., "Structured Design",
IBM Systems Journal, No. 2, 1974, p. 115-139.

[Westley, 79] Westley, A., ed., Infotech State of the Art Report on Software
Testing, Vol. i, Infotech International, 1979.

[White, 801 White, L. and Cohen, E., "A Domain Strategy for Computer Program
Testing", IEEE Trans. on Software Eng., SE-6, 3, May 1980, p. 247-257.

[Yourdon, 79] Yourdon, E. and Constantine, L., Structured Design, Prentice
Hall, Englewood Cliffs, N. J., 1979.

[Zeil, 81] Zeil, S. and White, L., "Sufficient Test Sets for Path Analysis
Testing Strategies", Proc. 5th Int'l. Conf. on Software En gineering, San Diego,
CA, March 1981, p. 184-191.

iA

SECURITY CLASSIFICATION OF THIS PAGFfW I
e
e

l
[Date I:

i i •REPORT DOCUMNIT A T ION PAGE RF,;D INST UC rIONs
, CESS o., / ATLGNMBER

, REPORT NUMBER 0 3CESSIO N E ' CATALO NUMAFOSR-TR. 8 . - 0 5 7 8 rJ1
4. TITLE (and S.bitle) 5 TYPE OF REPORT & PERIOD COVERED

AN APPROACH TO RELIABLE INTEGRATION TESTING TECHNICAL

6 PERFORMING ORG. REPORT NUMBER

OSU-CISRC-TR-81-5 -

7. AUTHOR(s) 8 CONTRACT OR GRANT NUMBER(s)

Allen Haley and Stuart Zweben F49620-79-C-0152

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK
AREA 8 WORK UNIT NUMBERS

Computer and Information Science Research Center PE61102F

Ohio State University 2304/A2
Columbus OH 43210 '_._

I. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Air Force Office of Scientific Research/NH .AY 81
Bolling AFB. DC 20332 13 NUMBER OF PAGES

I '/
14. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office) 15 SECURITY CLASS. (of this report)

UNCLASSIFIED

15a. DECLASSIFICATION DOONGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered In Block 20, If different from Report)

IS. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side it necessary and Identily by block number)

20 ABSTRACT tContinue on reverse side If necessary and identifs, by block numberl

A testing strategy which involves integrating a previously validated module into

a software system is described. It is shown that, when doing the integration
testing, it is not enough to treat the previously validated module as a "black
box", for otherwise certain integration errors may go undetected. For example,
an error in the calling program may cause an error in the rQodule's paths through
the module. The results indicate that such errors can be detected by the module

by retesting a set of paths whose cardinality depends only on the dimensionality

of the module's input sDace. rather than on the module's path complexity.
FORM

DD 1 J0A.73 1473 UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (%hen Data Entered)

- .,.--,.. .

